Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Marcin Palusiak, ${ }^{\text {a * }}$ Magdalena Małecka, ${ }^{\text {a }}$ Sławomir J. Grabowski, ${ }^{\text {a }}$ Jan Epsztajn, ${ }^{\text {b }}$ Adam Bieniek ${ }^{\text {b }}$ and Justyna A.
Kowalska ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Crystallography, University of Łódź, Pomorska 149/153, PL-90236 Łódź,
Poland, and ${ }^{\mathbf{b}}$ Department of Organic Chemistry, University of Łódź, Narutowicza 68, PL-90136 Łódź, Poland

Correspondence e-mail:
marcinp@krysia.uni.lodz.pl

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.109$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

(3S,4R)-4-(2,5-Dimethoxyphenyl)-8-methoxy-isochroman-3-ol

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$, the hydroxyl and dimethoxyphenyl substituents are in axial positions. The heterocyclic ring is in a half-chair conformation. The molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to the formation of a chain extended throughout the whole of the crystal.

Comment

Some members of the benzo[c]pyran family have been found in nature and have been shown to possess a variety of biological properties (Moore, 1977; Moore \& Czerniak, 1981). The title isochroman, (I), has been synthesized as part of a research project on new precursors for obtaining this type of antibiotic (Epsztajn et al., 2001). X-ray investigations were made in order to confirm the configurations of the chiral atoms C3 (S) and C4 (R), and to define the positions of the substituents attached to these atoms.

(I)

The molecule of the title compound consists of two condensed rings, phenyl and heterocyclic, with atom O 2 in position 2 of the latter. There is a hydroxyl group in position 3, a 2,5-dimethoxyphenyl substituent in position 4 and a methoxy group in position 8. The heterocyclic ring has a half-chair conformation, with the twofold axis passing through the midpoint of the $\mathrm{O} 2-\mathrm{C} 3$ bond. The puckering parameters (Cremer \& Pople, 1975) corresponding to the sequence C1$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$ are $Q=0.477$ (2) $\AA, \varphi_{2}=-77.6(4)^{\circ}$ and $q_{2}=132.6(3)^{\circ}$, and the asymmetry parameter (Nardelli, 1983) $\Delta_{2}(\mathrm{O} 2-\mathrm{C} 3)$ is $0.0413(8)$. The substituents in positions 3 and 4 of the heterocyclic ring are attached axially, with torsion angles $\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$ and $\mathrm{C} 41-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$ of -70.7 (2) and $101.8(2)^{\circ}$, respectively. The phenyl rings are almost planar and form a dihedral angle of $85.09(6)^{\circ}$. The O atom of the hydroxyl group acts as a hydrogen-bond donor to $\mathrm{O} 2^{\mathrm{i}}$ of an adjacent molecule [symmetry code: (i) $-x+5 / 2,-y$, $z+1 / 2$; see Table 2]. Finally, the linked molecules form a $C(4)$ chain (Fig. 2) (Bernstein et al., 1995).

Received 15 April 2002 Accepted 23 April 2002 Online 11 May 2002

Figure 1
Displacement ellipsoid plot (PLATON; Spek, 1998) of title compound, with the atom-labelling scheme. Ellipsoids are drawn at the 40% probability level.

Experimental

The synthesis of the title compound has been described elsewhere (Epsztajn et al., 2001). Crystals were obtained by slow evaporation from a methanol solution at room temperature.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$
$M_{r}=316.34$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=11.920$ (1) A
$b=18.114$ (2) \AA
$c=7.383(1) \AA$ 。
$V=1594.2(3) \AA^{3}$
$Z=4$
$D_{x}=1.318 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-5S diffractometer

ω scans

Absorption correction: analytical (de Meulenaer \& Tompa, 1965) $T_{\text {min }}=0.778, T_{\text {max }}=0.879$
6547 measured reflections
3063 independent reflections 2599 reflections with $I>2 \sigma(I)$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 20 reflections
$\theta=9.5-12.3^{\circ}$
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.50 \times 0.28 \times 0.18 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.024 \\
& \theta_{\max }=72.6^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-22 \rightarrow 22 \\
& l=-8 \rightarrow 8 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \text { intensity decay: }<2 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.109$
$S=1.02$
3063 reflections
217 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
The intermolecular hydrogen bonding in the crystal structure of the title compound.

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{O} 2-\mathrm{C} 3$	$1.426(3)$	$\mathrm{O} 45-\mathrm{C} 450$	$1.416(2)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.436(2)$	$\mathrm{C} 42-\mathrm{O} 42$	$1.367(2)$
$\mathrm{O} 80-\mathrm{C} 8$	$1.369(2)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.406(2)$
$\mathrm{O} 80-\mathrm{C} 80$	$1.420(3)$	$\mathrm{O} 42-\mathrm{C} 420$	$1.416(3)$
$\mathrm{O} 45-\mathrm{C} 45$	$1.383(3)$		
$\mathrm{C} 3-\mathrm{O} 2-\mathrm{C} 1$	$113.8(2)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{O} 2$	$110.7(2)$
$\mathrm{C} 8-\mathrm{O} 80-\mathrm{C} 80$	$117.9(2)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$110.0(2)$
$\mathrm{C} 45-\mathrm{O} 45-\mathrm{C} 450$	$118.2(2)$	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	$109.8(2)$
$\mathrm{C} 42-\mathrm{O} 42-\mathrm{C} 420$	$118.8(2)$		
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4-\mathrm{C} 41$	$101.8(2)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$-70.7(2)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 30 \cdots \mathrm{O}^{\mathrm{i}}$	$0.98(4)$	$1.90(4)$	$2.881(2)$	$171(3)$
Symmetry code: (i) $\frac{5}{2}-x,-y, \frac{1}{2}+z$.				

Atoms H30 and H3 were refined isotropically. The other H atoms were constrained to ride on their parent C atoms using AFIX in SHELXL97 (Sheldrick, 1997).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure:

SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998); software used to prepare material for publication: PARST97 (Nardelli, 1996).

Financial support from the University of Łódź (grant No. $505 / 667$) is gratefully acknowledged.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Epsztajn, J., Bieniek, A. \& Kowalska, J. A. (2001). Tetrahedron Lett. 42, 92939295.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1989). MSC/AFC Diffractometer Control Software and TEXSAN (Version 5.0). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Moore, H. W. (1977). Science, 197, 527-532.
Moore, H. W. \& Czerniak, R. (1981). Med. Res. Rev. 1, 249-280.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Version of November 1998. University of Utrecht, The Netherlands.

